UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : MATH1202

ASSESSMENT : MATH1202A PATTERN

MODULE NAME : Algebra 2

DATE : 08-May-08

TIME : 14:30

TIME ALLOWED : 2 Hours 0 Minutes

2007/08-MATH1202A-001-EXAM-177 ©2007 University College London

TURN OVER

www.mymathscloud.com

All questions may be attempted but only marks obtained on the best four solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Let H be a subset of a group G. Give necessary and sufficient conditions for H to be a subgroup of G. In each of the following cases, determine if H is a subgroup of G or not, justifying your answer:
 - (i) $G = \mathbb{R}$ under addition, $H = \{x \in G : x \ge 0\};$
 - (ii) $G = \mathbb{R}$ under addition, $H = \mathbb{Z}$;
 - (iii) $G = S_5$, $H = \{g \in G : g^3 = e\}$;
 - (iv) G is any abelian group, $H = \{g \in G : g^3 = e\};$

(v) G is any group, K is a subgroup of G, g is an element of G, and $H = \{g^{-1}kg : k \in K\}.$

[Here S_5 denotes the permutation group on $\{1, 2, 3, 4, 5\}$ under composition.]

2. (a) State (do not prove) Lagrange's Theorem. Prove that in any finite group the order of an element divides the order of the group.

(b) Let p be a prime and \mathbb{Z}_p^* the group of non-zero integers mod p under multiplication. Deduce from (a) that if $\overline{a} \in \mathbb{Z}_p^*$, then $\overline{a}^{p-1} = \overline{1}$.

(c) Find $\overline{3}^{1799}$ in \mathbb{Z}_{19}^* .

(d) $\overline{5}$ has order 9 in \mathbb{Z}_{19}^* . Show that there is no solution to $\overline{x}^3 = \overline{5}$ in \mathbb{Z}_{19}^* .

MATH1202

PLEASE TURN OVER

www.nymathscloud.com

- 3. (a) Let A be an $n \times n$ matrix. Give the definition of
 - (i) $\det(A)$,
 - (ii) the (i, j)-minor of A,
 - (iii) the (i, j)-cofactor of A,
 - (iv) the adjugate, adj(A) of A.

Stating any results you use, prove that $A adj(A) = (det A)I_n$.

(b) Let $A = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$. Find adj(A) and hence find an expression for A^{-1} , stating when it is valid.

- 4. (a) Let A be an $n \times n$ matrix over \mathbb{R} . Give the definition of:
 - (i) an eigenvalue λ of A;
 - (ii) an eigenvector \mathbf{v} of A;
 - (iii) the eigenspace E_{λ} associated to the eigenvalue λ
 - (iv) the characteristic polynomial $c_A(t)$ of A;
 - (v) A is diagonalizable (over \mathbb{R}).

(b) Prove that if $\lambda_1, ..., \lambda_r$ are distinct eigenvalues of A, then the sum $\sum_{i=1}^r E_{\lambda_i}$ is direct; hence show that if $\sum_{i=1}^r \dim(E_{\lambda_i}) = n$, then A is diagonalizable.

(c) Show that the matrix
$$\begin{pmatrix} 3 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

is diagonalizable.

MATH1202

CONTINUED

www.mymathscloud.com

5. Let $A = \begin{pmatrix} 1 & -5 \\ 2 & 8 \end{pmatrix}$.

- (i) Find an invertible matrix P such that $P^{-1}AP$ is diagonal.
- (ii) Find A^n (for positive integers n).
- (iii) Solve the system of difference equations

$$\begin{array}{rcrcrcrc} x_{n+1} &=& x_n &-& 5y_n \\ y_{n+1} &=& 2x_n &+& 8y_n \end{array}$$

for $n \ge 0$, given that $x_0 = 1$, $y_0 = 0$.

6. (a) Let A be a real symmetric matrix. Prove that any eigenvalue of A is real.

(b) Let
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
.
 $P^{-1}AP$ is diagonal.

Find an orthogonal matrix
$$P$$
 such that

www.mymainscloud.com

MATH1202

END OF PAPER

3